The airport master planning process for New Century AirCenter (IXD) has evolved through the development of forecasts of future demand, facility needs assessments, and the evaluation of airport development alternatives. The planning process has included the development of three phase reports which were presented to a Planning Advisory Committee (PAC), and discussed at several coordination meetings held throughout the study process. Additional presentations were made to the Johnson County Airport Commission at their regularly scheduled meetings. Airport management has participated in each of these meetings and has been actively involved in the master planning process.

The Planning Advisory Committee was comprised of several constituencies with a stake in the New Century AirCenter. Groups represented on the PAC included the FAA, the Johnson County Airport Commission, airport management, airport traffic controllers, airport fixed base operators (FBOs), pilot associations, neighborhood home owners associations, the regional metropolitan planning organization, planning departments for Olathe, Overland Park, and Johnson County, and regional chambers of commerce. This diverse group has provided extremely valuable input into this recommended plan.

In the previous chapter, several development alternatives were analyzed to explore options for the future growth and development of New Century AirCenter. The development alternatives were refined into a single recommended concept for the master plan after meeting with the PAC, Johnson County Airport Commission, and airport management. This chapter describes, in narrative and graphic form, the recommended direction for the
future use and development of New Century AirCenter.

RECOMMENDED CONCEPT

The recommended master plan concept incorporates elements from each of the three alternatives presented in the previous chapter. Additional proposed landside facilities have also been added to the final master plan concept. The recommended concept provides the airport with the ability to meet the increasing demands on the airport by corporate aircraft, while also providing adequate space for small, general aviation aircraft operators.

It is important to note that the final concept provides for anticipated facility needs over the next 20 years, as well as establishing a vision and direction for meeting facility needs beyond the 20-year planning period. The following sections summarize specific airside and landside recommendations included in the final concept. A discussion of land use planning in the vicinity of the airport is also presented as a guide for local and regional planners. The recommended concept is shown on Exhibit 5A.

The recommended master plan concept is a significant departure from the direction of the previous master plan. The previous master plan included design elements intended to accommodate air carrier service as well as air cargo hubbing operations. Discussions presented in Chapter Two - Aviation Demand Forecasts, indicated that the potential for these services to locate at New Century AirCenter are quite remote based on the growth patterns of air carrier and air cargo operators. Thus, the recommended master plan presents a development pattern designed to accommodate potential growth in general aviation activity.

AIRFIELD DESIGN STANDARDS

The Federal Aviation Administration (FAA) has established design criteria to define the physical dimensions of runways and taxiways, as well as the imaginary surfaces surrounding them which protect the safe operation of aircraft at the airport. These design standards also define the separation criteria for the placement of landside facilities.

As discussed previously, FAA design criteria primarily center around the airport’s critical design aircraft. The critical aircraft is the most demanding aircraft or family of aircraft which currently, or are projected to, conduct 500 or more operations (take-offs or landings) per year at the airport. Factors included in airport design are an aircraft’s wingspan, approach speed and, in some cases, the instrument approach visibility minimums for each runway. The FAA has established the Airport Reference Code (ARC) to relate these critical aircraft factors to airfield design standards.

New Century AirCenter is presently used by a wide range of general aviation aircraft. The majority of these aircraft are single and multi-engine aircraft which fall into the ARC A-I and B-I categories. In addition, larger business
turboprop and turbojet aircraft that fall within approach categories B, C, and D are using the airport more frequently.

Analysis conducted in Chapter Three-Facility Requirements, concluded that the current critical aircraft is defined by general aviation business jets that fall into ARC C/D-II. This category of aircraft include models such as the Cessna 650, 680, and 750; Falcon 900EX and F-Series; and Hawker 800XP and 1000. Larger business jet aircraft, such as the Gulfstream II, IV, and V and Bombardier Global Express and Learjet 60, also contribute to the current critical aircraft.

The master plan anticipates that business jet aircraft use will increase in the future, consistent with national trends and FAA forecasts. It is anticipated that the airport will be increasingly utilized by businesses and fractional-ownership groups who are conducting business in the Johnson County area. Much of this growth will be spurred by the positive economic outlook for Johnson County. Thus, the critical aircraft is anticipated to transition to those in ARC D-III during the 20-year scope of this plan. It should be noted that the airport could also be increasingly utilized by aircraft in ARC C/D-IV if unscheduled cargo operations located at IXD. For this reason, the plan should be flexible to account for this possibility.

Planning up to ARC D-IV will allow the airport to accommodate all business jets on the market today. Moreover, meeting this more stringent design standard, where possible and/or applicable (e.g., runway width, taxiway width, etc.), will ensure that the airport is suitable to meet the existing and future demands of airport users, ensuring that Johnson County will remain regionally competitive. Table 5A summarizes the airport design standards to be applied at New Century AirCenter.

AIRSIDE PLANNING RECOMMENDATIONS

The recommended airside concept is presented on Exhibit 5A. Of primary consideration is planning the runway and taxiway system in such a manner that the airport will be readily expandible in order to address any significant changes to the role of the airport in the future. The master plan forecasts a modest transition from a current ARC of C/D-II to C/D-III during the 20-year scope of the plan. With the possibility of a cargo operator utilizing Group IV or larger aircraft locating at the airport, this plan preserves those areas that would necessarily need to be improved.

This plan preserves those areas of the airfield that may need to be improved in order to accommodate a rapid transition to an even larger critical aircraft. One such scenario would be if a cargo operator wished to establish operations at New Century AirCenter and planned to utilize aircraft in ADG IV.
The runway/taxiway plan also recognizes that New Century AirCenter provides the longest runway in the region next to those provided at Kansas City.
City International Airport (MCI). The events of September 11, 2001, showed that there are occasions when a rapid clearing of the national air traffic system is necessary. On that occasion, every airplane in the sky landed in a very short period of time. In the greater Kansas City region, New Century AirCenter provides important back-up to MCI.

To address these potential needs, an extension to the primary runway to an ultimate length of 8,500 feet is considered. The previous master plan also recommended an extension to this length. Even though aviation demand forecasts for the next 20 years do not show an immediate need for the extension, the unique role of the airport as a reliever to MCI and as a potential large aircraft operations base, warrant maintaining the runway extension in the plan.

The primary runway currently supports a Category I (CAT I) approach from the south to Runway 36. This approach provides for instrument operations in weather conditions where visibility is ½-mile or greater and the cloud ceilings are 200 feet above ground level (AGL) or higher. This is the only CAT I approach in the Kansas City region other than those at MCI. Approaches from the north to Runway 18 have one mile visibility minimums and cloud ceilings of approximately 500 feet AGL. This plan considers an improved instrument approach to Runway 18 to the CAT I minimums supported by Runway 36.

Under current guidelines for implementation of a CAT I approach, a number of navigational aids are necessary. New Century AirCenter would need to acquire a glide-slope antenna which provides vertical guidance and a medium intensity approach lighting system with runway alignment indicator lights (MALSR). A localizer is also necessary but the airport already has this in place. These three navigational aids, in conjunction, provide a complete instrument landing system (ILS). The last and most expensive step to acquiring a CAT I ILS approach is to have the FAA calibrate all the equipment through flight testing.

Advances in satellite technology are making CAT I approaches using the global positioning system (GPS) a reality. In fact, Runway 36 currently supports a near CAT I GPS approach with ½-mile visibility minimum and approximately 400-foot cloud ceilings. When feasible, this master plan recommends pursuing a CAT I GPS approach to Runway 18. Installation of the ILS equipment to serve Runway 18 would not be required if GPS technology is available.

The master plan also considers the necessity of developing a runway parallel to the primary runway. The previous master plan called for a parallel runway that was 7,300 feet long. This runway was intended to increase airfield capacity due to projected air carrier airline and cargo operations. This master plan recognizes that New Century AirCenter better serves the regional and national aviation system as a first class general aviation facility. To this end, a shorter parallel runway is considered.

The parallel runway is situated approximately 2,670 feet to the east of Runway 18-36. It is intended to serve
all small general aviation aircraft and a portion of the business jet aircraft that utilize the airport. Small aircraft and training operations could be segregated from the operations of larger and transient aircraft utilizing the primary runway. The parallel runway could also serve as a back-up on those occasions when the primary runway is closed, typically due to maintenance. The parallel runway is projected to be 5,000 feet long by 75 feet wide and served by a parallel taxiway.

The parallel runway should be outfitted with medium intensity runway lights (MIRL) to facilitate nighttime operations. Runway end identification lights (REILs) are also considered to provide long-range identification of the runway ends from the air. One-mile GPS instrument approaches should be supplemented with precision approach path indicator (PAPI) lights. PAPI lights are visible in both day and night and visually inform a pilot if the aircraft is on the correct approach path.

Crosswind Runway 4-22 is proposed to be maintained at its current dimensions with improvements to the taxiways that serve it. Parallel taxiways, at a separation distance of 300 feet, are considered for both sides of the runway. This runway is projected to remain a B-II runway through the planning period. The taxiway separation standard for Group II aircraft is 240 feet. Since the taxiways would be new construction, it is recommended to locate them at 300 feet which meets the more stringent standards. Thus, if in the future the runway design increases, complete relocation of the taxiways may not be necessary.

Runway 4-22 is served by MITL to facilitate nighttime operations. Runway 4 is also served by a PAPI approach slope indicator system. The only instrument approach is a circling VOR-A approach. Runway 4-22 is considered for GPS approaches with one mile visibility minimums. REILs are considered for each runway end and Runway 22 should be outfitted with a PAPI as well.

LANDSIDE PLANNING RECOMMENDATIONS

The primary goal of landside facility planning is to provide adequate aircraft storage space to meet the forecast need while also maximizing operational efficiencies and land uses. Achieving this goal yields a development scheme which segregates aircraft activity levels while maximizing the airport’s revenue potential. **Exhibit 5A** depicts the recommended landside development plan for the airport.

Airport services and aircraft storage are currently available to the west of Runway 18-36 and to the northeast, facing Runway 4-22. Both of these areas are nearing development capacity. The ultimate landside development plan considers establishing a new airport growth area immediately south of Runway 4-22 and between the two parallel runways. Prior to pursuing development in this central airfield area, some fill-in of existing vacant areas is available.

Development possibilities exist directly north of the northwest conventional hangars. These hangars are currently
occupied by Garmin International and Honeywell. At least two more like-sized hangars are possible as presented on Exhibit 5A, and additional hangars could also be constructed provided they remain below the 40:1 departure surface serving the Runway 18 end.

A large conventional hangar (200 feet x 200 feet is depicted) could occupy the open space on the west side, central to the primary runway. Any development of a hangar here should be restricted to a business providing aviation-related services such as a fixed base operator (FBO).

The remaining west side hangars presented on the exhibit address a growing trend by aircraft owners for smaller individual executive hangars. Four of these hangars are possible, facing a taxilane extending from Taxiway F. Additional executive hangars could be located to the southwest of the runway. This executive hangar development presents two design methods. The first is a pod-like concept where hangars face a central taxilane and the second is a more traditional pattern of hangars facing and sharing a common public ramp. This development plan gives developers different options for hangar location while preserving the efficient layout of the airport.

There is some opportunity for expansion to the east side terminal area. Conventional hangar development space has been identified facing the runway. A public aircraft ramp is proposed fronting these hangars. Expansion of the north T-hangar complex is also considered. Due to a significant drop in elevation to the north, expansion of this complex is primarily to the east. A total of nine new T-hangar facilities are depicted. A portion of 159th Street is proposed to be rerouted in order to accommodate the T-hangars.

As discussed in Chapter Four - Alternatives, three potential locations for a replacement airport traffic control tower (ATCT) have been identified. The west and north sites are advantageous in the short term because necessary infrastructure is readily available. The long term vision for the airport may include relocating the ATCT to the future development area between the parallel runways. To do this would require the extension of utilities to the area. Under an airfield configuration with a parallel runway, it would be desirable to have the ATCT more centrally located. The plan reserves the three sites for the development of an ATCT. An ATCT siting study should be conducted to evaluate and ultimately select a site.

The placement of hangar facilities on the infield (the development area between the parallel runways) follows a planning strategy which strives to provide maximum separation of activity levels. High-activity conventional hangars are located most central to the runway system while medium activity executive hangars are set to the sides. Low activity T-hangars are situated on the far ends of the development areas.

Two land areas adjacent to the airport are recommended for acquisition by the airport. The first is a 54-acre parcel to the immediate northeast of the east side terminal area. Nine acres of this parcel would fall in the runway protection zone (RPZ) serving the parallel runway. The FAA strongly recommends that the
airport have positive control over the RPZs. The remaining 45 acres is recommended to be acquired and designated for future industrial/commercial development as a means of protecting the airport from encroachment.

Property acquisition necessary to insure safe and efficient airport operations is eligible for grant funding from the FAA. This funding is only available if the property will immediately be used in support of airport operations. Federal funding assistance for acquisition of this parcel would only be available when the parallel runway is constructed. If the Johnson County Airport Commission were to purchase the land on their own, they would be reimbursed in the form of grant matches by the FAA, once the parallel runway is constructed.

The second area considered for acquisition is 200 acres southeast of the airport, between the airport property line and Old Highway 56. A portion of this property would be necessary for the construction of the parallel runway. The remaining property is recommended for acquisition in an effort to protect the airport from possible encroachment. The remaining property could then be developed as a business park which would be capable of providing revenues to the airport.

This property has a number of advantages that would appeal to an industrial developer. First, industrial development is very compatible with the airport environment. Second, the surface access to Interstate 35 is quick and easy. Third, the close proximity of the railroad would expand the number of potential industrial developers. The airport’s demonstrated ability to manage on-airport industrial facilities with railroad access certainly would be attractive to a developer. In addition, the revenue generated by the business park would go directly to the airport in support of operations or future capital projects.

The ultimate landside plan exceeds the forecast facility needs of this master plan and is presented in an effort to provide airport management with a long term vision which will yield a first-class aviation facility capable of increasing revenues which exceed operational costs. It should be noted that the development of all facilities should consider aesthetics as a high priority. The airport is often the first and last impression a corporate decision-maker has of the community. Consideration should always be given to the development of facilities which meet aviation demand while presenting a positive image to all users.

AIRPORT LAYOUT PLAN SET

As part of this master plan, the FAA requires the development of several computer drawings detailing specific parts of the airport and its environs. These drawings were created on a computer-aided drafting system (CAD) and serve as the official depiction of the current and planned condition of the airport. These drawings will be delivered to the FAA for their review and inspection. The FAA will critique the drawings from a technical perspective to be sure all applicable federal regulations are met. The FAA
will use the CAD drawings as the basis and justification for funding decisions.

It should be noted that the FAA requires that any changes to the airfield (i.e., runway extension, etc.) be represented on the drawings. The landside configuration, developed during this master planning process, is also depicted on the drawings but the FAA recognized that landside development is much more fluid and dependent up on developer needs. Thus, an updated drawing set is not necessary for landside alterations.

The following is a description of the CAD drawings included with this master plan.

AIRPORT LAYOUT PLAN

An official Airport Layout Plan (ALP) drawing has been developed for New Century AirCenter and can be found at the end of this chapter. The ALP drawing graphically presents the existing and ultimate airport layout plan. The ALP drawing will include such elements as the physical airport features, wind data tabulation, location of airfield facilities (i.e., runways, taxiways, navigational aids), and existing general aviation development (and commercial development for air carrier airports). Also presented on the ALP is the runway safety areas, airport property boundary, and revenue support areas. The ALP is used by FAA to determine funding eligibility for future capital projects.

The computerized plan provides detailed information on existing and future facility layout on multiple layers that permit the user to focus on any section of the airport at a desired scale. The plan can be used as base information for design and can be easily updated in the future to reflect new development and more detail concerning existing conditions as made available through design surveys.

TERMINAL AREA PLAN

The Terminal Area Plan provides greater detail concerning landside improvements and at a larger scale than on the ALP. This drawing depicts potential landside development on both sides of the runway.

AIRPORT LAND USE PLAN

There are two primary considerations for airport land use planning: first, to secure those areas essential to the safe and efficient operation of the airport and, second, to determine compatible land uses for the balance of the property which would be most advantageous to the airport and community. The plan depicts the recommendations for ultimate land use development on the airport. When development is proposed, it should be directed to the appropriate land use area depicted on this plan.

Both on-airport and off-airport land uses will be depicted based on the planned future condition of the airport. Thus, if a parcel currently has an office building on it and the ultimate airport development plan does not include removing the office building, then the future condition assumes the office building to remain.

On-airport land uses include the airport operations areas, general aviation
landside uses, industrial/commercial uses, agricultural uses, open space, as well as distinctions between aeronautical and non-aeronautical uses. Off-airport land uses include those land uses immediately adjacent to the airport property boundary and any land uses, such as schools, hospitals, parks, etc., impacted by incompatible noise levels.

Noise

Aircraft sound emissions are often the most noticeable environmental effect an airport will produce on the surrounding community. If the sound is sufficiently loud or frequent in occurrence, it may interfere with various activities or otherwise be considered objectionable.

To determine the noise-related impacts that the proposed development could have on the environment surrounding New Century AirCenter, noise exposure patterns were analyzed for both existing airport activity conditions and projected long term activity conditions.

The basic methodology employed to define aircraft noise levels involves the use of a mathematical model for aircraft noise predication. The Yearly Day-Night Average Sound Level (DNL) is used in this study to assess aircraft noise. DNL is the metric currently accepted by the FAA, Environmental Protection Agency (EPA), and Department of Housing and Urban Development (HUD), as an appropriate measure of cumulative noise exposure. These three federal agencies have each identified the 65 DNL noise contour as the threshold of incompatibility, meaning that noise levels below 65 DNL are considered compatible with underlying land uses. Most federally funded airport noise studies use DNL as the primary metric for evaluating noise.

DNL is defined as the average A-weighted sound level as measured in decibels (dB), during a 24-hour period. A 10 dB penalty applies to noise events occurring at night (10:00 p.m. to 7:00 a.m.). DNL is a summation metric which allows objective analysis and can describe noise exposure comprehensively over a large area.

Since noise decreases at a constant rate in all directions from a source, points of equal DNL noise levels are routinely indicated by means of a contour line. The various contour lines are then superimposed on a map of the airport and its environs. It is important to recognize that a line drawn on a map does not imply that a particular noise condition exists on one side of the line and not on the other. DNL calculations do not precisely define noise impacts. Nevertheless, DNL contours can be used to: (1) highlight existing or potential incompatibilities between an airport and any surrounding development; (2) assess relative exposure levels; (3) assist in the preparation of airport environs land use plans; and (4) provide guidance in the development of land use control devices, such as zoning ordinances, subdivision regulations, and building codes.

The noise contours for New Century AirCenter have been developed from the Integrated Noise Model (INM), Version 6.1. The INM was developed by the Transportation Systems Center of the U.S. Department of Transportation at Cambridge, Massachusetts, and has been specified by the FAA as one of two
models acceptable for federally-funded noise analysis.

The INM is a computer model which accounts for each aircraft along flight tracks during an average 24-hour period. These flight tracks are coupled with separate tables contained in the data base of the INM which relate to noise, distances, and engine thrust for each make and model of aircraft type selected.

Computer input files for the noise analysis assumed implementation of the recommended development of the airport as identified on the Airport Layout Drawing. The input files contain operational data, runway utilization, aircraft flight tracks, and fleet mix as projected in the plan. The operational data and aircraft fleet mix are summarized in Table 5A. For more detailed information of the aviation forecasts for New Century AirCenter refer to Chapter Two, Aviation Demand Forecasts.

Other important inputs into the program include the runway use percentages and percentage of day and night operations. Business jets were modeled exclusively on Runway 18-36 both in the existing condition and in the future noise contour scenarios. Single engine, multi-engine, and small turboprops were split between Runway 18-36 (65 percent) and 4-22 (35 percent) in the existing condition. A 5,000-foot parallel runway (18R-36L) is in the long range plan for the airport. Approximately 32 percent of the touch-and-go operations were shifted to this planned parallel in the 2025 noise contour scenario. Also, three percent of all operations were considered for nighttime.

Considering existing operational activity, the 65 DNL and all other contours inside the 65 DNL noise exposure contour encompass approximately 320.9 acres that are

<table>
<thead>
<tr>
<th>TABLE 5A</th>
<th>Existing</th>
<th>2025</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avi ation Forecast Summary</td>
<td></td>
<td></td>
</tr>
<tr>
<td>New Century AirCenter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type of Operations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ITINERANT OPERATIONS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single Engine Piston</td>
<td>21,681</td>
<td>31,232</td>
</tr>
<tr>
<td>Multi-Engine Piston</td>
<td>2,376</td>
<td>4,608</td>
</tr>
<tr>
<td>Turboprop</td>
<td>1,188</td>
<td>2,560</td>
</tr>
<tr>
<td>Business Jet</td>
<td>2,970</td>
<td>10,240</td>
</tr>
<tr>
<td>Helicopter</td>
<td>1,485</td>
<td>2,560</td>
</tr>
<tr>
<td>Total Itinerant</td>
<td>29,700</td>
<td>51,200</td>
</tr>
<tr>
<td>LOCAL OPERATIONS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single Engine Piston</td>
<td>21,510</td>
<td>36,105</td>
</tr>
<tr>
<td>Multi-Engine Piston</td>
<td>2,390</td>
<td>5,395</td>
</tr>
<tr>
<td>Total Local</td>
<td>23,900</td>
<td>41,500</td>
</tr>
<tr>
<td>Total Operations</td>
<td>53,600</td>
<td>92,700</td>
</tr>
<tr>
<td>Source: Coffman Associates analysis</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
contained within existing airport property as depicted on Exhibit 5B.

Considering projected ultimate operational activity, the 65 DNL noise contour and other contours encompass approximately 318.7 acres as depicted on Exhibit 5C. The primary reason for the slight decrease is due to the projected phase-out of older and louder Stage 2 business jets from the long range forecast. The ultimate 65 DNL contour would extend beyond airport property slightly to the east and west of the airport (20 feet to the east and 50 feet to the west). No existing noise-sensitive land uses (residences, places of worship, schools, hospitals, nursing homes, etc.) are impacted by the 2025 65 DNL noise exposure contour.

Compatible Land Use

Title 14 of the Code of Federal Regulations (14 CFR), Part 150 recommends guidelines for planning land use compatibility within various levels of aircraft noise. As the name indicates, these are guidelines only; Part 150 explicitly states that determinations of noise compatibility and regulation of land use are purely local responsibilities.

Based upon the results of the noise modeling efforts, the 65 DNL noise contour is contained on airport property and no existing noise-sensitive land uses are located within either the existing or ultimate noise exposure contour; therefore, no significant noise impacts are expected as a result of the proposed airport development.

The primary goal of compatible land use planning is to achieve and maintain compatibility between the airport and its surrounding community. Inherent in this goal is the assurance that the airport can maintain or expand its size and level of operations to satisfy existing and future aviation demand. The protection of the investment in a facility such as an airport is of great importance. At the same time, a person who lives, works, or owns property near an airport should be able to enjoy the location without infringement by noise or other adverse impacts of the airport.

INNER PORTION OF THE APPROACH SURFACE PLAN

The Inner Portion of the Approach Surface Plan is a scaled drawing of the runway protection zone (RPZ), the runway safety area (RSA), the obstacle free zone (OFZ), and the object free area (OFA) for each runway end. A plan and profile view of each RPZ is provided to facilitate identification of obstructions that lie within these safety areas. Detailed obstruction and facility data is provided to identify planned improvements and the disposition of obstructions.

PROPERTY MAP

The Property Map provides information on the acquisition and identification of all land tracts under control of the airport.
SUMMARY

The recommended master plan concept has been developed in conjunction with the Planning Advisory Committee, the Johnson County Airport Commission, airport management, and is designed to assist in making decisions on future development and growth of New Century AirCenter. This plan provides the necessary development to accommodate and satisfy the anticipated growth over the next 20 years and beyond.

Flexibility will be very important to future development at the airport. Activity projected over the next 20 years may not occur as predicted. The plan has attempted to consider demands that may be placed on the airport even beyond the 20-year planning horizon to ensure that the facility will be capable of handling a wide range of circumstances. The recommended plan provides the airport stakeholders with a general guide that, if followed, can maintain the airport’s long term viability and allow the airport to continue to provide air transportation service to the region.
AIRPORT LAYOUT PLANS
FOR
NEW CENTURY AIRCENTER
Olathe, Kansas

INDEX OF DRAWINGS

1. AIRPORT LAYOUT DRAWING
2. AIRPORT AIRSPACE DRAWING I
3. AIRPORT AIRSPACE DRAWING II
4. AIRPORT AIRSPACE DRAWING III
5. RUNWAY 18R–36L PROFILE DRAWING
6. RUNWAY 18L–36R PROFILE DRAWING
7. RUNWAY 4–22 PROFILE DRAWING
8. RUNWAY 18R INNER PORTION OF APPROACH SURFACE DRAWING
9. RUNWAY 36L INNER PORTION OF APPROACH SURFACE DRAWING
10. RUNWAY 18L INNER PORTION OF APPROACH SURFACE DRAWING
11. RUNWAY 36R INNER PORTION OF APPROACH SURFACE DRAWING
12. RUNWAY 4 INNER PORTION OF APPROACH SURFACE DRAWING
13. RUNWAY 22 INNER PORTION OF APPROACH SURFACE DRAWING
14. TERMINAL AREA DRAWING I
15. TERMINAL AREA DRAWING II
16. AIRPORT LAND USE DRAWING
17. AIRPORT PROPERTY MAP

Prepared for the
Johnson County Airport Commission

DECEMBER 2006
GENERAL NOTES:
1. THE REFERENCE DATUM USED FOR HORIZONTAL COORDINATES IS NORTH AMERICAN DATUM 1983 (NAD 83)
2. HORIZONTAL COORDINATES ARE NORTH AMERICAN VANCOUVER 1983 (NAD 83) AND ELEVATIONS ARE FROM DATUM
 NORTH AMERICAN VANCOUVER 1983 HORIZONTAL COORDINATE SYSTEM AND NAVSTAR GLOBAL POSITIONING SYSTEM (GPS)
 ELEVATION.
3. ALL DISTANCE MEASUREMENTS ARE FT.
4. NO OBSTRUCTIONS FOUND WITH EXISTING AND ULTIMATE APPROACH AND Threshold SURFACES.

NEW CENTURY AIRPORT
INNER PORTION OF RUNWAY 4
APPROACH SURFACE DRAWING

Coffman Associates

NEW CENTURY AIRPORT

PLANNED BY: Patricia Harper
CREATED BY: M. Sorrell

DATE: 12/12/00

901 N. 13th Street
Omaha, NE 68102

Copyright 2000 Coffman Associates, Inc. All rights reserved. This drawing is the property of Coffman Associates and may not be copied or distributed in any form without written consent from Coffman Associates.